Periodic modulation of motor-unit activity in extrinsic hand muscles during multidigit grasping.

نویسندگان

  • Jamie A Johnston
  • Sara A Winges
  • Marco Santello
چکیده

We recently examined the extent to which motor units of digit flexor muscles receive common input during multidigit grasping. This task elicited moderate to strong motor-unit synchrony (common input strength, CIS) across muscles (flexor digitorum profundus, FDP, and flexor pollicis longus, FPL) and across FDP muscle compartments, although the strength of this common input was not uniform across digit pairs. To further characterize the neural mechanisms underlying the control of multidigit grasping, we analyzed the relationship between firing of single motor units from these hand muscles in the frequency domain by computing coherence. We report three primary findings. First, in contrast to what has been reported in intrinsic hand muscles, motor units belonging to different muscles and muscle compartments of extrinsic digit flexors exhibited significant coherence in the 0- to 5- and 5- to 10-Hz frequency ranges and much weaker coherence in the higher 10-20 Hz range (maximum 0.0025 and 0.0008, respectively, pooled across all FDP compartment pairs). Second, the strength and incidence of coherence differed considerably across digit pairs. Third, contrary to what has been reported in the literature, across-muscle coherence can be stronger and more prevalent than within-muscle coherence, as FPL-FDP2 (thumb-index digit pair) exhibited the strongest and most prevalent coherence in our data (0.010 and 43% at 3 Hz, respectively). The heterogeneous organization of common input to these muscles and muscle compartments is discussed in relation to the functional role of individual digit pairs in the coordination of multiple digit forces in grasping.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abstract-Papers up to 4 pages should be submitted using this format

stract—The biomechanical structure of the hand s underlying neurophysiology contribute to the nation of the kinematics and kinetics necessary for igit grasping. We recently examined the neural zation of inputs to different extrinsic finger flexors multi-digit object hold and found moderate to motor unit short-term synchrony. This suggests a on neural input to the motoneurons innervating differe...

متن کامل

Coordination of intrinsic and extrinsic hand muscle activity as a function of wrist joint angle during two-digit grasping.

Fingertip forces result from the activation of muscles that cross the wrist and muscles whose origins and insertions reside within the hand (extrinsic and intrinsic hand muscles, respectively). Thus, tasks that involve changes in wrist angle affect the moment arm and length, hence the force-producing capabilities, of extrinsic muscles only. If a grasping task requires the exertion of constant f...

متن کامل

Common input to motor units of intrinsic and extrinsic hand muscles during two-digit object hold.

Anatomical and physiological evidence suggests that common input to motor neurons of hand muscles is an important neural mechanism for hand control. To gain insight into the synaptic input underlying the coordination of hand muscles, significant effort has been devoted to describing the distribution of common input across motor units of extrinsic muscles. Much less is known, however, about the ...

متن کامل

JN-00516-2004.R1 Common input to motor units of digit flexors during multi-digit grasping

The control of whole hand grasping relies on complex coordination of multiple forces. While many studies have characterized the coordination of finger forces and torques, the control of hand muscle activity underlying multi-digit grasping has not been studied to the same extent. Motor unit synchrony across finger muscles or muscle compartments might be one of the factors underlying the limited ...

متن کامل

Multidigit control of contact forces during transport of handheld objects.

When an object is lifted vertically, the normal force increases and decreases in tandem with tangential (load) force to safely avoid slips. For horizontal object transport, horizontal forces at the contact surfaces can be decomposed into manipulation forces (producing acceleration/deceleration) and grasping forces. Although the grasping forces must satisfy equilibrium constraints, it is not cle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 94 1  شماره 

صفحات  -

تاریخ انتشار 2005